
The Yoneda Embedding and Group

Representations

A.P. Neate

I will be describing the relationship between group representations (for
which [1] is an excellent introduction) and functor categories. Furthermore,
I will use this relationship to give a way to construct some group represen-
tations purely categorically. The main tool in achieving this is the Yoneda
embedding, an embedding derived from the Yoneda Lemma [3].

De�nition 0.1. The Yoneda embedding is a fully faithful embedding

y : C ↪→ [Cop,Set]

such that for objects c, c′,

y(c)(c′) := C(c′, c)

is natural in c and c′. For a morphism g : x → y in C we have,

y(g)(c′) := C(c′, g) : C(c′, x) → C(c′, y)

which sends f : c′ → x to g◦f . For a morphism h : y → x in Cop we similarly
have,

y(c)(h) := C(h, c) : C(x, c) → C(y, c)

which sends f : x → c to f ◦ h. This generalises to an enriched Yoneda
embedding [2] where for a V -enriched category C, if V has underlying set
structure, we have the embedding,

y : C ↪→ [Cop, V ]; y(c)(c′) := C(c′, c);

y(g)(c′) := C(c′, g); y(c)(h) := C(h, c).

De�nition 0.2. Let G be a group. The VectC-enriched category BCG has
one object • and hom object BCG(•, •) = CG. The composition ◦ : CG ⊗
CG → CG is given by the group multiplication g ⊗ h 7→ g · h. The identity
morphism id : C → BCG sends c ∈ C to its product ce with the group
identity.

De�nition 0.3. LetG be a group and V be a vector space. AG-representation
on V is a group homomorphism ρ : G → GL(V ).
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Example 0.4. A particular pair of examples of a representation we will
be interested in is the right and left regular representations. For any
group G the group algebra CG over C can be considered as a vector space.
Multiplication on the left by an element g ∈ G is, by de�nition of the algebra
multiplication, a linear map

(g·) : CG → CG;
∑
h∈G

chh 7→
∑
h∈G

ch(g · h).

We can quickly check this gives a group homomorphism ρ : G → GL(CG)
by g 7→ (g·). Multiplication can either be done on the left, as above, or on
the right and this gives rise to the left regular representation

regCG := (CG, ρ : G → CG; g 7→ g · (−))

or the right regular representation

CGreg := (CG, ρ : G → CG; g 7→ (−) · g)

respectively.

De�nition 0.5. Let ρ : G → GL(V ) and τ : G → GL(W ) be group repre-
sentations. A G-equivariant map is a linear map f : V → W such that the
following diagram commutes for all g ∈ G.

V W

V W

f

f

ρ(g) τ(g)

De�nition 0.6. The category Rep(G) has objects which are pairs (V, ρ : G →
GL(V )) of a vector space V and a G-representation on V . The morphisms
are given by the G-equivariant maps.

De�nition 0.7. Let I : [BCG,VectC] → Rep(G) be the functor which sends
a VectC-functor F : BCG → VectC to the pair

(F (•), ρ : G → GL(F (•)) ; g 7→ F (g)) ∈ Rep(G)

and sends a natural transformation η to the G-equivariant map which is the
linear map corresponding to the component of η at •.

To know this is indeed a functor we need to verify that I(F )(g) is in
GL(F (•)) but since functors preserve isomorphism and all g ∈ G have inverse
g−1 then all g ∈ G are isomorphisms of BCG and so we know that F (g) is
in GL(F (•)). We also need to verify that a natural transformation does
indeed map to a G-equivariant map but simply applying our functor to all
morphisms and objects of a natural transformation square gives the required
condition on a G-equivariant map.

2



Lemma 0.8. The functor I : [BCG,VectC] → Rep(G) is an isomorphism

of categories.

Proof. Let J : Rep(G) → [BCG,VectC] be the functor which sends (V, ρ : G →
GL(V )) ∈ Rep(G) to the functor

J(ρ) : BCG → VectC; • 7→ V,
∑
g∈G

cgg 7→
∑
g∈G

cgρ(g)

and sends a G-equivariant map f : V → V to the natural transformation
with component f at • considered as a linear map.

We claim J is inverse to I. Firstly if F : BCG → VectC is a functor then
the representation of I(F ) is the restriction of F on G which sends g ∈ G to
F (g) ∈ GL(F (•)) so I(F ) is the pair (F (•), F : G → GL(F (•))) ∈ Rep(G).
By de�nition of J we send I(F ) to the functor J(I(F )) which sends • to
F (•) and

∑
g∈G cgg ∈ CG to

∑
g∈G cgF (g). Because F is a VectC-functor,

F is a linear map and so we have
∑

g∈G cgF (g) = F
(∑

g∈G cgg
)
and hence

J ◦ I(F ) = F .
Let η : F → G be a natural transformation in [BCG,VectC] with com-

ponent η• at •. The G-equivariant map I(η) is de�ned to be η• and J(I(η))
is the natural transformation with component η•. Since η only has one com-
ponent then this means J ◦ I(η) = η. This shows J ◦ I = id[BCG,VectC]

Conversely let ρ : G → GL(V ) be a G-representation. We know J(ρ) is
a functor such that J(ρ)(•) = V and for all g ∈ G we have J(ρ)(g) = ρ(g).
Since GL(J(ρ)(•)) = GL(V ) this means I ◦ J(ρ) is a G-representation G →
GL(V ) which sends g to J(ρ)(g) = ρ(g) and hence I ◦ J(ρ) = ρ.

Finally let f be a G-equivariant map then J(f) is a natural transforma-
tion with single component f . Then I sends J(f) back to f since f is the
component of J(f) at •. Hence we have that I ◦J = idRep(G) and so J = I−1

as required.

Theorem 0.9. Consider the Yoneda embedding y : BCGop → [BCG,VectC]
and the canonical isomorphism I : [BCG,VectC] → Rep(G). The following

characterises I ◦ y : BCGop → Rep(G).

1. The object • of BCGop is sent to the left regular representation regCG.

2. For any g ∈ CG we have (g : • → •) 7→ (g · v : regCG → regCG) i.e. the
G-equivariant map given by left multiplication by g.

Proof.

1. Since y(•) is a functor then we need to �nd what y(•) does on objects
and morphisms of BCG respectively. First y(•)(•) = BCGop(•, •) by
De�nition 0.1 of the Yoneda embedding. By De�nition 0.2 we have
BCGop(•, •) = CG as a vector space and so we have the map of y(•)
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on objects. For the map on morphisms of BCG De�nition 0.1 of the
Yoneda embedding tells us that

y(•)(g) = BCGop(g, •) : BCGop(•, •) → BCGop(•, •)

sends v ∈ BCG to v ◦ g. The composition in BCG sends v ◦ g to the
�ipped multiplication gv and so y(•) is a functor sending g to the map
g · (−) ∈ End(CG). By De�nition 0.7, the functor I sends y(•) to the
pair

(y(•)(•), ρ : G → GL(y(•)(•); g 7→ y(•)(g))
= (CG, ρ : G → CG; g 7→ g · (−))

in Rep(G). This is exactly the left regular representation regCG.

2. First we need to calculate the natural transformation y(g). Since g is a
morphism • → • we know y(g) is a natural transformation y(•) → y(•).
Since y(g) is a map of functors of BCGop we can evaluate everything
at •. That is y(g)(•) : y(•)(•) → y(•)(•) which is given by De�nition
0.1 of the Yoneda embedding as the map BCGop(•, g) which sends
v ∈ BCGop(•, •) to g ◦ v. As before the composition in BCG sends
g◦v to the �ipped multiplication vg, i.e. y(g)(•) is the linear map (−)·g.
Since BCGop has only one object so (−)·g is the one component (linear
map) of the natural transformation y(g). By De�nition 0.7, the functor
I sends y(g) map to the linear map (−) · g of vector spaces considered
as G-equivariant map. That is y(g) is precisely the G-equivariant map
(−) · g : regCG → regCG.
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