The Yoneda Embedding and Group Representations

A.P. Neate

I will be describing the relationship between group representations (for which [1] is an excellent introduction) and functor categories. Furthermore, I will use this relationship to give a way to construct some group representations purely categorically. The main tool in achieving this is the Yoneda embedding, an embedding derived from the Yoneda Lemma [3].

Definition 0.1. The **Yoneda embedding** is a fully faithful embedding

$$y: C \hookrightarrow [C^{\mathrm{op}}, \mathbf{Set}]$$

such that for objects c, c',

$$y(c)(c') \coloneqq C(c',c)$$

is natural in c and c'. For a morphism $g: x \to y$ in C we have,

$$y(g)(c') \coloneqq C(c',g) \colon C(c',x) \to C(c',y)$$

which sends $f: c' \to x$ to $g \circ f$. For a morphism $h: y \to x$ in C^{op} we similarly have,

$$y(c)(h) \coloneqq C(h,c) \colon C(x,c) \to C(y,c)$$

which sends $f: x \to c$ to $f \circ h$. This generalises to an enriched Yoneda embedding [2] where for a V-enriched category C, if V has underlying set structure, we have the embedding,

$$y: C \hookrightarrow [C^{\mathrm{op}}, V]; \quad y(c)(c') \coloneqq C(c', c);$$

$$y(g)(c') \coloneqq C(c', g); \quad y(c)(h) \coloneqq C(h, c).$$

Definition 0.2. Let G be a group. The $\operatorname{Vect}_{\mathbb{C}}$ -enriched category $B\mathbb{C}G$ has one object \bullet and hom object $B\mathbb{C}G(\bullet, \bullet) = \mathbb{C}G$. The composition $\circ: \mathbb{C}G \otimes \mathbb{C}G \to \mathbb{C}G$ is given by the group multiplication $g \otimes h \mapsto g \cdot h$. The identity morphism id: $\mathbb{C} \to B\mathbb{C}G$ sends $c \in \mathbb{C}$ to its product ce with the group identity.

Definition 0.3. Let G be a group and V be a vector space. A G-representation on V is a group homomorphism $\rho: G \to GL(V)$. **Example 0.4.** A particular pair of examples of a representation we will be interested in is the **right and left regular representations**. For any group G the group algebra $\mathbb{C}G$ over \mathbb{C} can be considered as a vector space. Multiplication on the left by an element $g \in G$ is, by definition of the algebra multiplication, a linear map

$$(g\cdot)\colon \mathbb{C}G \to \mathbb{C}G; \ \sum_{h\in G} c_h h \mapsto \sum_{h\in G} c_h(g\cdot h).$$

We can quickly check this gives a group homomorphism $\rho: G \to GL(\mathbb{C}G)$ by $g \mapsto (g \cdot)$. Multiplication can either be done on the left, as above, or on the right and this gives rise to the left regular representation

$${}^{\operatorname{reg}}\mathbb{C}G\coloneqq(\mathbb{C}G,\rho\colon G\to\mathbb{C}G;g\mapsto g\cdot(-))$$

or the right regular representation

$$\mathbb{C}G^{\mathrm{reg}} \coloneqq (\mathbb{C}G, \rho \colon G \to \mathbb{C}G; g \mapsto (-) \cdot g)$$

respectively.

Definition 0.5. Let $\rho: G \to GL(V)$ and $\tau: G \to GL(W)$ be group representations. A *G*-equivariant map is a linear map $f: V \to W$ such that the following diagram commutes for all $g \in G$.

Definition 0.6. The category $\operatorname{Rep}(G)$ has objects which are pairs $(V, \rho: G \to GL(V))$ of a vector space V and a G-representation on V. The morphisms are given by the G-equivariant maps.

Definition 0.7. Let $I: [B\mathbb{C}G, \mathbf{Vect}_{\mathbb{C}}] \to \operatorname{Rep}(G)$ be the functor which sends a $\mathbf{Vect}_{\mathbb{C}}$ -functor $F: B\mathbb{C}G \to \mathbf{Vect}_{\mathbb{C}}$ to the pair

$$(F(\bullet), \rho: G \to GL(F(\bullet)); g \mapsto F(g)) \in \operatorname{Rep}(G)$$

and sends a natural transformation η to the *G*-equivariant map which is the linear map corresponding to the component of η at \bullet .

To know this is indeed a functor we need to verify that I(F)(g) is in $GL(F(\bullet))$ but since functors preserve isomorphism and all $g \in G$ have inverse g^{-1} then all $g \in G$ are isomorphisms of $B\mathbb{C}G$ and so we know that F(g) is in $GL(F(\bullet))$. We also need to verify that a natural transformation does indeed map to a G-equivariant map but simply applying our functor to all morphisms and objects of a natural transformation square gives the required condition on a G-equivariant map.

Lemma 0.8. The functor $I: [B\mathbb{C}G, \mathbf{Vect}_{\mathbb{C}}] \to \operatorname{Rep}(G)$ is an isomorphism of categories.

Proof. Let $J : \operatorname{Rep}(G) \to [B\mathbb{C}G, \operatorname{Vect}_{\mathbb{C}}]$ be the functor which sends $(V, \rho : G \to GL(V)) \in \operatorname{Rep}(G)$ to the functor

$$J(\rho) \colon B\mathbb{C}G \to \mathbf{Vect}_{\mathbb{C}}; \ \bullet \mapsto V, \sum_{g \in G} c_g g \mapsto \sum_{g \in G} c_g \rho(g)$$

and sends a G-equivariant map $f: V \to V$ to the natural transformation with component f at \bullet considered as a linear map.

We claim J is inverse to I. Firstly if $F: B\mathbb{C}G \to \mathbf{Vect}_{\mathbb{C}}$ is a functor then the representation of I(F) is the restriction of F on G which sends $g \in G$ to $F(g) \in GL(F(\bullet))$ so I(F) is the pair $(F(\bullet), F: G \to GL(F(\bullet))) \in \operatorname{Rep}(G)$. By definition of J we send I(F) to the functor J(I(F)) which sends \bullet to $F(\bullet)$ and $\sum_{g \in G} c_g g \in \mathbb{C}G$ to $\sum_{g \in G} c_g F(g)$. Because F is a $\mathbf{Vect}_{\mathbb{C}}$ -functor, F is a linear map and so we have $\sum_{g \in G} c_g F(g) = F\left(\sum_{g \in G} c_g g\right)$ and hence $J \circ I(F) = F$.

Let $\eta: F \to G$ be a natural transformation in $[B\mathbb{C}G, \mathbf{Vect}_{\mathbb{C}}]$ with component η_{\bullet} at \bullet . The *G*-equivariant map $I(\eta)$ is defined to be η_{\bullet} and $J(I(\eta))$ is the natural transformation with component η_{\bullet} . Since η only has one component then this means $J \circ I(\eta) = \eta$. This shows $J \circ I = \mathrm{id}_{[B\mathbb{C}G, \mathbf{Vect}_{\mathbb{C}}]}$

Conversely let $\rho: G \to GL(V)$ be a *G*-representation. We know $J(\rho)$ is a functor such that $J(\rho)(\bullet) = V$ and for all $g \in G$ we have $J(\rho)(g) = \rho(g)$. Since $GL(J(\rho)(\bullet)) = GL(V)$ this means $I \circ J(\rho)$ is a *G*-representation $G \to GL(V)$ which sends g to $J(\rho)(g) = \rho(g)$ and hence $I \circ J(\rho) = \rho$.

Finally let f be a G-equivariant map then J(f) is a natural transformation with single component f. Then I sends J(f) back to f since f is the component of J(f) at \bullet . Hence we have that $I \circ J = \mathrm{id}_{\mathrm{Rep}(G)}$ and so $J = I^{-1}$ as required.

Theorem 0.9. Consider the Yoneda embedding $y: \mathbb{BC}G^{\mathrm{op}} \to [\mathbb{BC}G, \mathbf{Vect}_{\mathbb{C}}]$ and the canonical isomorphism $I: [\mathbb{BC}G, \mathbf{Vect}_{\mathbb{C}}] \to \operatorname{Rep}(G)$. The following characterises $I \circ y: \mathbb{BC}G^{\mathrm{op}} \to \operatorname{Rep}(G)$.

- 1. The object \bullet of $B\mathbb{C}G^{\mathrm{op}}$ is sent to the left regular representation $^{\mathrm{reg}}\mathbb{C}G$.
- 2. For any $g \in \mathbb{C}G$ we have $(g: \bullet \to \bullet) \mapsto (g \cdot v: {}^{\operatorname{reg}}\mathbb{C}G \to {}^{\operatorname{reg}}\mathbb{C}G)$ i.e. the *G*-equivariant map given by left multiplication by *g*.

Proof.

 Since y(•) is a functor then we need to find what y(•) does on objects and morphisms of BCG respectively. First y(•)(•) = BCG^{op}(•,•) by Definition 0.1 of the Yoneda embedding. By Definition 0.2 we have BCG^{op}(•,•) = CG as a vector space and so we have the map of y(•) on objects. For the map on morphisms of $B\mathbb{C}G$ Definition 0.1 of the Yoneda embedding tells us that

$$y(\bullet)(g) = B\mathbb{C}G^{\mathrm{op}}(g, \bullet) \colon B\mathbb{C}G^{\mathrm{op}}(\bullet, \bullet) \to B\mathbb{C}G^{\mathrm{op}}(\bullet, \bullet)$$

sends $v \in B\mathbb{C}G$ to $v \circ g$. The composition in $B\mathbb{C}G$ sends $v \circ g$ to the flipped multiplication gv and so $y(\bullet)$ is a functor sending g to the map $g \cdot (-) \in \operatorname{End}(\mathbb{C}G)$. By Definition 0.7, the functor I sends $y(\bullet)$ to the pair

$$(y(\bullet)(\bullet), \rho \colon G \to GL(y(\bullet)(\bullet); g \mapsto y(\bullet)(g)))$$

= (\mathbb{C}G, \rho : G \rightarrow \mathbb{C}G; g \mathbf{e}g \cdot (-))

in $\operatorname{Rep}(G)$. This is exactly the left regular representation $\operatorname{reg}\mathbb{C}G$.

First we need to calculate the natural transformation y(g). Since g is a morphism • → • we know y(g) is a natural transformation y(•) → y(•). Since y(g) is a map of functors of BCG^{op} we can evaluate everything at •. That is y(g)(•): y(•)(•) → y(•)(•) which is given by Definition 0.1 of the Yoneda embedding as the map BCG^{op}(•,g) which sends v ∈ BCG^{op}(•,•) to g ∘ v. As before the composition in BCG sends g ∘ v to the flipped multiplication vg, i.e. y(g)(•) is the linear map (-)·g. Since BCG^{op} has only one object so (-)·g is the one component (linear map) of the natural transformation y(g). By Definition 0.7, the functor I sends y(g) map to the linear map (-)·g of vector spaces considered as G-equivariant map. That is y(g) is precisely the G-equivariant map (-)·g: ^{reg}CG → ^{reg}CG.

References

- Martina Balagović. MAGIC075 Representations of Groups. MAGIC Course Lecutre Notes. 2023. URL: https://maths-magic.ac.uk/courses/ 2022-2023/magic075.
- Eduardo J. Dubuc. In: Kan extensions in Enriched Category Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 1970, pp. 149–166. ISBN: 978-3-540-36307-1. DOI: 10.1007/BFb0060490.
- [3] Emily Riehl. In: Category Theory in Context. Dover Publications, 2017, pp. 57-60. ISBN: 9780486820804. URL: https://math.jhu.edu/~eriehl/ context.pdf.