The Yoneda Embedding and Group Representations

A.P. Neate

I will be describing the relationship between group representations (for which [1] is an excellent introduction) and functor categories. Furthermore, I will use this relationship to give a way to construct some group representations purely categorically. The main tool in achieving this is the Yoneda embedding, an embedding derived from the Yoneda Lemma [3].

Definition 0.1. The Yoneda embedding is a fully faithful embedding

$$
y: C \hookrightarrow\left[C^{\mathrm{op}}, \mathrm{Set}\right]
$$

such that for objects c, c^{\prime},

$$
y(c)\left(c^{\prime}\right):=C\left(c^{\prime}, c\right)
$$

is natural in c and c^{\prime}. For a morphism $g: x \rightarrow y$ in C we have,

$$
y(g)\left(c^{\prime}\right):=C\left(c^{\prime}, g\right): C\left(c^{\prime}, x\right) \rightarrow C\left(c^{\prime}, y\right)
$$

which sends $f: c^{\prime} \rightarrow x$ to $g \circ f$. For a morphism $h: y \rightarrow x$ in $C^{\text {op }}$ we similarly have,

$$
y(c)(h):=C(h, c): C(x, c) \rightarrow C(y, c)
$$

which sends $f: x \rightarrow c$ to $f \circ h$. This generalises to an enriched Yoneda embedding [2] where for a V-enriched category C, if V has underlying set structure, we have the embedding,

$$
\begin{array}{rlrl}
y: C \hookrightarrow\left[C^{\mathrm{op}}, V\right] ; & y(c)\left(c^{\prime}\right) & :=C\left(c^{\prime}, c\right) ; \\
y(g)\left(c^{\prime}\right):=C\left(c^{\prime}, g\right) ; & y(c)(h):=C(h, c) .
\end{array}
$$

Definition 0.2. Let G be a group. The Vect $\mathbb{C}_{\mathbb{C}}$ enriched category $B \mathbb{C} G$ has one object • and hom object $B \mathbb{C} G(\bullet, \bullet)=\mathbb{C} G$. The composition $\circ: \mathbb{C} G \otimes$ $\mathbb{C} G \rightarrow \mathbb{C} G$ is given by the group multiplication $g \otimes h \mapsto g \cdot h$. The identity morphism id: $\mathbb{C} \rightarrow B \mathbb{C} G$ sends $c \in \mathbb{C}$ to its product ce with the group identity.

Definition 0.3. Let G be a group and V be a vector space. A G-representation on V is a group homomorphism $\rho: G \rightarrow G L(V)$.

Example 0.4. A particular pair of examples of a representation we will be interested in is the right and left regular representations. For any group G the group algebra $\mathbb{C} G$ over \mathbb{C} can be considered as a vector space. Multiplication on the left by an element $g \in G$ is, by definition of the algebra multiplication, a linear map

$$
(g \cdot): \mathbb{C} G \rightarrow \mathbb{C} G ; \sum_{h \in G} c_{h} h \mapsto \sum_{h \in G} c_{h}(g \cdot h) .
$$

We can quickly check this gives a group homomorphism $\rho: G \rightarrow G L(\mathbb{C} G)$ by $g \mapsto(g \cdot)$. Multiplication can either be done on the left, as above, or on the right and this gives rise to the left regular representation

$$
{ }^{\mathrm{reg}^{C}} G:=(\mathbb{C} G, \rho: G \rightarrow \mathbb{C} G ; g \mapsto g \cdot(-))
$$

or the right regular representation

$$
\mathbb{C} G^{\mathrm{reg}}:=(\mathbb{C} G, \rho: G \rightarrow \mathbb{C} G ; g \mapsto(-) \cdot g)
$$

respectively.
Definition 0.5. Let $\rho: G \rightarrow G L(V)$ and $\tau: G \rightarrow G L(W)$ be group representations. A G-equivariant map is a linear map $f: V \rightarrow W$ such that the following diagram commutes for all $g \in G$.

Definition 0.6. The category $\operatorname{Rep}(G)$ has objects which are pairs $(V, \rho: G \rightarrow$ $G L(V)$) of a vector space V and a G-representation on V. The morphisms are given by the G-equivariant maps.

Definition 0.7. Let $I:\left[B \mathbb{C} G, \operatorname{Vect}_{\mathbb{C}}\right] \rightarrow \operatorname{Rep}(G)$ be the functor which sends a Vect $_{\mathbb{C}}$-functor $F: B \mathbb{C} G \rightarrow$ Vect $_{\mathbb{C}}$ to the pair

$$
(F(\bullet), \rho: G \rightarrow G L(F(\bullet)) ; g \mapsto F(g)) \in \operatorname{Rep}(G)
$$

and sends a natural transformation η to the G-equivariant map which is the linear map corresponding to the component of η at \bullet.

To know this is indeed a functor we need to verify that $I(F)(g)$ is in $G L(F(\bullet))$ but since functors preserve isomorphism and all $g \in G$ have inverse g^{-1} then all $g \in G$ are isomorphisms of $B \mathbb{C} G$ and so we know that $F(g)$ is in $G L(F(\bullet))$. We also need to verify that a natural transformation does indeed map to a G-equivariant map but simply applying our functor to all morphisms and objects of a natural transformation square gives the required condition on a G-equivariant map.

Lemma 0.8. The functor $I:\left[B \mathbb{C} G, \operatorname{Vect}_{\mathbb{C}}\right] \rightarrow \operatorname{Rep}(G)$ is an isomorphism of categories.

Proof. Let $J: \operatorname{Rep}(G) \rightarrow\left[B \mathbb{C} G\right.$, Vect $\left._{\mathbb{C}}\right]$ be the functor which sends $(V, \rho: G \rightarrow$ $G L(V)) \in \operatorname{Rep}(G)$ to the functor

$$
J(\rho): B \mathbb{C} G \rightarrow \text { Vect }_{\mathbb{C}} ; \bullet \mapsto V, \sum_{g \in G} c_{g} g \mapsto \sum_{g \in G} c_{g} \rho(g)
$$

and sends a G-equivariant map $f: V \rightarrow V$ to the natural transformation with component f at \bullet considered as a linear map.

We claim J is inverse to I. Firstly if $F: B \mathbb{C} G \rightarrow$ Vect $_{\mathbb{C}}$ is a functor then the representation of $I(F)$ is the restriction of F on G which sends $g \in G$ to $F(g) \in G L(F(\bullet))$ so $I(F)$ is the pair $(F(\bullet), F: G \rightarrow G L(F(\bullet))) \in \operatorname{Rep}(G)$. By definition of J we send $I(F)$ to the functor $J(I(F))$ which sends • to $F(\bullet)$ and $\sum_{g \in G} c_{g} g \in \mathbb{C} G$ to $\sum_{g \in G} c_{g} F(g)$. Because F is a Vect $\mathbb{C}_{\mathbb{C}}$-functor, F is a linear map and so we have $\sum_{g \in G} c_{g} F(g)=F\left(\sum_{g \in G} c_{g} g\right)$ and hence $J \circ I(F)=F$.

Let $\eta: F \rightarrow G$ be a natural transformation in $\left[B \mathbb{C} G\right.$, Vect $\left._{\mathbb{C}}\right]$ with component η_{\bullet} at \bullet. The G-equivariant map $I(\eta)$ is defined to be η_{\bullet} and $J(I(\eta))$ is the natural transformation with component η_{\bullet}. Since η only has one component then this means $J \circ I(\eta)=\eta$. This shows $J \circ I=\mathrm{id}_{\left[B \mathbb{C} G, \text { Vect }_{\mathbb{C}}\right]}$

Conversely let $\rho: G \rightarrow G L(V)$ be a G-representation. We know $J(\rho)$ is a functor such that $J(\rho)(\bullet)=V$ and for all $g \in G$ we have $J(\rho)(g)=\rho(g)$. Since $G L(J(\rho)(\bullet))=G L(V)$ this means $I \circ J(\rho)$ is a G-representation $G \rightarrow$ $G L(V)$ which sends g to $J(\rho)(g)=\rho(g)$ and hence $I \circ J(\rho)=\rho$.

Finally let f be a G-equivariant map then $J(f)$ is a natural transformation with single component f. Then I sends $J(f)$ back to f since f is the component of $J(f)$ at \bullet. Hence we have that $I \circ J=\operatorname{id}_{\operatorname{Rep}(G)}$ and so $J=I^{-1}$ as required.

Theorem 0.9. Consider the Yoneda embedding $y: B \mathbb{C} G^{\text {op }} \rightarrow\left[B \mathbb{C} G\right.$, Vect $\left._{\mathbb{C}}\right]$ and the canonical isomorphism $I:\left[B \mathbb{C} G, \operatorname{Vect}_{\mathbb{C}}\right] \rightarrow \operatorname{Rep}(G)$. The following characterises $I \circ y: B \mathbb{C} G^{\circ \mathrm{p}} \rightarrow \operatorname{Rep}(G)$.

1. The object • of $B \mathbb{C} G^{\mathrm{op}}$ is sent to the left regular representation ${ }^{\text {reg }} \mathbb{C} G$.
2. For any $g \in \mathbb{C} G$ we have $(g: \bullet \rightarrow \bullet) \mapsto\left(g \cdot v:{ }^{\mathrm{reg}} \mathbb{C} G \rightarrow{ }^{\mathrm{reg}} \mathbb{C} G\right)$ i.e. the G-equivariant map given by left multiplication by g.

Proof.

1. Since $y(\bullet)$ is a functor then we need to find what $y(\bullet)$ does on objects and morphisms of $B \mathbb{C} G$ respectively. First $y(\bullet)(\bullet)=B \mathbb{C} G^{\mathrm{op}}(\bullet, \bullet)$ by Definition 0.1 of the Yoneda embedding. By Definition 0.2 we have $B \mathbb{C} G^{\mathrm{op}}(\bullet, \bullet)=\mathbb{C} G$ as a vector space and so we have the map of $y(\bullet)$
on objects. For the map on morphisms of $B \mathbb{C} G$ Definition 0.1 of the Yoneda embedding tells us that

$$
y(\bullet)(g)=B \mathbb{C} G^{\mathrm{op}}(g, \bullet): B \mathbb{C} G^{\mathrm{op}}(\bullet, \bullet) \rightarrow B \mathbb{C} G^{\mathrm{op}}(\bullet \bullet \bullet)
$$

sends $v \in B \mathbb{C} G$ to $v \circ g$. The composition in $B \mathbb{C} G$ sends $v \circ g$ to the flipped multiplication $g v$ and so $y(\bullet)$ is a functor sending g to the map $g \cdot(-) \in \operatorname{End}(\mathbb{C} G)$. By Definition 0.7, the functor I sends $y(\bullet)$ to the pair

$$
\begin{aligned}
& (y(\bullet)(\bullet), \rho: G \rightarrow G L(y(\bullet)(\bullet) ; g \mapsto y(\bullet)(g)) \\
& =(\mathbb{C} G, \rho: G \rightarrow \mathbb{C} G ; g \mapsto g \cdot(-))
\end{aligned}
$$

in $\operatorname{Rep}(G)$. This is exactly the left regular representation ${ }^{\text {reg }} \mathbb{C} G$.
2. First we need to calculate the natural transformation $y(g)$. Since g is a morphism $\bullet \rightarrow$ we know $y(g)$ is a natural transformation $y(\bullet) \rightarrow y(\bullet)$. Since $y(g)$ is a map of functors of $B \mathbb{C} G^{\text {op }}$ we can evaluate everything at • That is $y(g)(\bullet): y(\bullet)(\bullet) \rightarrow y(\bullet)(\bullet)$ which is given by Definition 0.1 of the Yoneda embedding as the map $B \mathbb{C} G^{\mathrm{op}}(\bullet, g)$ which sends $v \in B \mathbb{C} G^{\mathrm{op}}(\bullet, \bullet)$ to $g \circ v$. As before the composition in $B \mathbb{C} G$ sends $g \circ v$ to the flipped multiplication $v g$, i.e. $y(g)(\bullet)$ is the linear map $(-) \cdot g$. Since $B \mathbb{C} G^{\text {op }}$ has only one object so $(-) \cdot g$ is the one component (linear map) of the natural transformation $y(g)$. By Definition 0.7 , the functor I sends $y(g)$ map to the linear map $(-) \cdot g$ of vector spaces considered as G-equivariant map. That is $y(g)$ is precisely the G-equivariant map $(-) \cdot g:{ }^{\mathrm{reg}} \mathbb{C} G \rightarrow{ }^{\mathrm{reg}} \mathbb{C} G$.

References

[1] Martina Balagović. MAGIC075 Representations of Groups. MAGIC Course Lecutre Notes. 2023. URL: https://maths-magic.ac.uk/courses/ 2022-2023/magic075
[2] Eduardo J. Dubuc. In: Kan extensions in Enriched Category Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 1970, pp. 149-166. ISBN: 978-3-540-36307-1. DOI: 10.1007/BFb0060490,
[3] Emily Riehl. In: Category Theory in Context. Dover Publications, 2017, pp. 57-60. ISBN: 9780486820804. URL: https://math.jhu.edu/~eriehl, context.pdf.

